Home Demos Forum Research Guide
This is a research entry associated with a third-party research project or paper. We are not responsible for the contents of any files associated with this submission, or for the accuracy of any code / results. Any questions should be directed to the author(s) of the work.
Experiments in Genetic Divergence for Emergent Systems
Abstract: Emergent software systems take a step towards tackling the ever-increasing complexity of modern software, by having systems self-assemble from a library of building blocks, and then continually re-assemble themselves from alternative building blocks to learn which compositions of behaviour work best in each deployment environment. One of the key challenges in emergent systems is populating the library of building blocks, and particularly a set of alternative implementations of particular building blocks, which form the runtime search space of optimal behaviour. We present initial work in using a fusion of genetic improvement and genetic synthesis to automatically populate a divergent set of implementations of the same functionality, allowing emergent systems to explore new behavioural alternatives without human input. Our early results indicate this approach is able to successfully yield useful divergent implementations of building blocks which are more suited than any existing alternative for particular operating conditions.
Status: Published. You can share this link.
Venue: GI 2018.
Requirements: Dana 204 download
Download: gi2018mcgowan.zip